Persamaangaris lurus umumnya berbentuk a x + b y + c = 0 atau y = m x + c (dengan m = gradien) atau a x + b y = d. Perhatikan gambar berikut. Gambar di atas menunjukkan garis lurus dengan persamaan a x + b y + c = 0 yang melalui dua titik, yaitu titik biru dengan koordinat ( x 1, y 1) dan titik merah dengan koordinat ( x 2, y 2).1 Bentuk Implisit Bentuk persamaan garis lurus ini ditulis dengan y= mx+c. Y dan y merupakan variabel sedangkan m dan c adalah konstanta. Dalam bentuk ini, m sering disebut sebagai koefisien arah atau gradien dari garis lurus. Oleh karena itu, apabila ada persamaan y= 3x + c, itu berarti gradien m = 3. Baca Juga
ax- by = -ab dan yang lainnya. Di bawah ini adalah berbagai bentuk garis lurus sekaligus cara menyatakan persamaan garis lurus. Perhatikan baik-baik gambar di bawah ini: Bentuk umum persa maan garis lurus dinyatakan dalam persamaan y = mx + c, di mana m merupakan gradien, x adalah variabel, serta c merupakan konstanta.
m= ∆y/∆x = (y2 - y1)/ (x2 - x1) dimana: ∆y = y2 - y1. ∆x = x2 - x1. (∆ dibaca delta, merupakan selisih antara x2 dengan x1 atau y2 dengan y1) Untuk memantapkan pemahaman Anda tentang gradien suatu garis jika garis tersebut melalui dua buah titik tanpa melalui titik pusat, silahkan simak contoh soal di bawah ini.A Persamaan Garis Lurus. Sebuah garis lurus dalam ruang ditentukan secara analitik sebagai garis potong antara dua bidang datar. Jadi merupakan himpunan titik-titik yang memenuhi persamaan-persamaan : A1x + B1y + C1z + D1 = 0 dan A2x + B2y + C2z + D2 = 0.a4x3.